
Area Efficient Architecture for the Embedded Block
Coding in JPEG 2000

Yu-Wei Chang, Hung-Chi Fang, Chun-Chia Chen and Liang-Gee Chen

DSP/IC Design Lab, Graduate Institute of Electronics Engineering and
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

{wayne, honchi, chunchia, lgchen}@video.ee.ntu.edu.tw

Abstract— An area efficient architecture for the embedded block coding
in JPEG 2000 is implemented on a 1.23 mm2 die using 0.18 µm CMOS
technology. This chip can support 16.7 MS/s lossless encoding. The area
of the proposed architecture is only 1

6 of the conventional architectures
while the throughput is the same as others. The proposed architecture
has the highest performance comparing with other existing architectures
according to the experimental results.

I. INTRODUCTION

JPEG 2000 [1] [2] [3] [4] is well-known for its excellent coding
performance and numerous features [5], such as region of interest,
scalability, error resilience, etc. All these powerful tools can be
provided by a unified algorithm in a single JPEG 2000 codestream.
For example, an image can be losslessly coded for storage and then
retrieved at different bit-rates by transcoding. Transcoding of the
JPEG 2000 codestream can be done by parsing, reordering, and
truncating the original codestream. However, the high computational
complexity that gives such excellent performance and rich features
correspondingly restricts real-time applications of JPEG 2000. In this
paper, we proposed an area efficient architecture for the embedded
block coding in JPEG 2000.

JPEG 2000 is a new still image coding standard, which is entirely
different from the JPEG [6]. The functional block diagram of the
JPEG 2000 encoder is shown in Fig. 1. The Discrete Wavelet Trans-
form (DWT) is adopted as the transform algorithm of JPEG 2000.
The DWT has several features that are better than the Discrete Cosine
Transform (DCT), such as better coding performance, easy rate
control, fully embedded coding, etc. After the DWT, a uniform scalar
quantization is applied to the transformed coefficient. The entropy
coding algorithm of JPEG 2000 is the Embedded Block Coding with
Optimized Truncation (EBCOT) [7] [8]. It is a two-tiered algorithm,
in which the Embedded Block Coding (EBC) is the tier-1 and the
Rate-Distortion Optimization (RDO) is the tier-2. The EBC is based
on a context-adaptive binary Arithmetic Encoder (AE). By optimized
truncation of the embedded bit streams, the RDO optimizes the coded
image quality at a given target bit rate.

The Embedded Block Coding (EBC) is the most complicated part
of JPEG 2000 [9] and is the bottleneck for real-time applications.
Therefore, many EBC architectures are proposed [9] [10] [11] [12] to
solve the problem. Lian et al. [9] proposed the first EBC architecture,
which implements the default mode of the EBC algorithm. In this
architecture, three techniques are used to skip unnecessary check-
point, and the processing cycles are reduced by 60% comparing
to [2]. To reduce the hardware cost, Hsiao et al. [10] proposed a
memory-saving architecture that reduces the memory requirement
by 4 Kbits (Kb). On the other hand, Chiang et al. [11] proposed a
pass-parallel architecture to increase the processing rate based on the
parallel mode. The processing cycles are reduced by 67% comparing
to [2]. The above three architectures process a code-block bit-plane

Discrete
Wavelet

Transform

Image
Source CodestreamUniform

Scalar
Quantization

Embedded
Block Coding

(EBC)

Rate-Distortion
Optimization

(RDO)

Transform Quantization Entropy Coding

Rate Control

DWT EBCOT

Fig. 1. Functional block diagram of the JPEG 2000 encoder. The JPEG 2000
encoder comprises the discrete wavelet transform, the uniform scalar quantiza-
tion, and the embedded block coding with optimization truncation algorithm.

Context
Formation

Wavelet
Coefficient

FIFO
(4 x 7)

Count

Pass

Coding State
Registers

CXD0

CXD1

CXD2

CXD3

Pass

CXD

Arithmetic
Encoder

Embedded
Bit Stream

MQ-Coder

Output
Buffer

(7 x 10)

Pass

Byte2

Byte1

Byte0

Fig. 2. Block diagram of the proposed EBC architecture. There are three
major modules: the context formation module, the FIFO module, and the
arithmetic encoder.

by bit-plane. Fang et al. proposed a parallel architecture to process a
coefficient per cycle. All the above architectures occupies more than
5.0 mm2 silicon area in 0.35 µm technology, which is too large.

In this design, we proposed an area efficient EBC architecture for
JPEG 2000. This architecture is based on the new context formation
algorithm, which can accomplish the context formation without
storing any state variables. All the state variables are computed on-
the-fly while a coefficient is read. Besides, the data flow and controls
are simplified by using the proposed algorithm. This architecture
can encode all the three coding passes in a bit-plane in one scan.
Therefore, it features high throughput and low area cost for the
embedded block coding in JPEG 2000.

II. PROPOSED ARCHITECTURE

Figure 2 shows the block diagram of the low cost Embedded
Block Coding (EBC) architecture. It contains four main modules:
the Context Formation (CF) module, the First-In First-Out (FIFO)
module, the Arithmetic Encoder (AE) module, and the Output Buffer
(OB) module. The input is the wavelet coefficient and the output is the
embedded bit stream. The OB module is used to reduce the number
of output ports while maintaining the same throughput. To prevent
the buffer overflow, the number of the registers are chosen as 7.

DC-9

5170-7803-9162-4/05/$20.00 ©2005 IEEE

State
Generator

Wavelet
Coefficent

2D Shift Registers
(20 x 5)

Line Buffer (64 x 5)

MSB Pass
Generator

4

1

24

Pass & Contribution
Generator

45

5

Zero
Coding

Magnitude
Refinement

Run
Length
Coding

Sign
Coding

4

12

5
Count

CXD0

Pass

CXD1

CXD2

CXD3

4

Fig. 3. Block diagram of the context formation module. A 2D shift register
bank is used to fit the dataflow with the scan order defined in the JPEG 2000
encoder.

Shift Control

R3

R2
R1

R0

Count

Pass

Context

Pass

Valid

CXD0
CXD1
CXD2
CXD3

Decision

Fig. 4. Block diagram of the FIFO module. There will be 0 ∼ 4 inputs and
one output per cycle.

A. Context Formation

Based on the algorithm we proposed in [13], the low cost CF
module is obtained as shown in Fig. 3. The state variables, usually
implemented as 8 Kb memory in conventional CF architecture,
are computed on-the-fly by the state generator while reading the
wavelet coefficient. Therefore, the 8Kb state memory are eliminated.
The resulted state variables as well as sign and magnitude bit of
coefficients are fed into the 2D shift registers to fit the scan order
defined in the JPEG 2000 standard. The MSB coding pass of the
scanned coefficient is then generated by the MSB pass generator,
and merged into the data flow in the 2D shift registers. A line buffer
with size 64×5 is required to store the last row of previous stripe.

The coding pass and significant contributions are generated in the
pass & contribution generator for the context formation. In order
to cope with the special run-length code, the contexts generated by
the zero coding, magnitude refinement, and sign coding modules are
buffered for three cycles. After deciding whether the run-length code
is used or not, the final ConteXt Decision (CXD) pairs are generated
by the run length coding module. Note that various number of CXD
pairs may output in one cycle. The extreme case occurs in the first
sample coefficient of a column when the run-length coding fails.
Four CXD pairs are generated in this case: one run-length CXD pair,
two uniform CXD pairs, and one sign coding CXD pair. The coding
pass information is also required since the three coding passes are
processed in parallel.

B. FIFO

The FIFO module is used to smoothen the input data flow of
the AE module. This is because the CF module generates various
number of CXD pairs, from 0 to 4, per cycle. However, the AE
module can only process one CXD pair per cycle. Thus, the use of
the FIFO module can alleviate the problem arisen from the throughput
mismatch between the CF and AE modules. As shown in Fig. 4, there
are four registers in the FIFO, in which each register has seven bits
comprising two bits of coding pass and five bits of CXD pair.

Coding Status Register Bank

Interval (A)
Update

Probability
Table

Code (C)
Update

Byteout

Pass 1 Pass 2 Pass 3

Decision

Context
Pass

Bit Stream

Pass

Stage 1 Stage 2

Valid

Fig. 5. Block diagram of the AE module. It has three suits of the coding
status registers and one suit of processing elements.

C. Arithmetic Encoder

In the proposed architecture, the three coding passes in a bit-plane
is proposed in parallel. Thus, there are three embedded bit streams
to be processed by the AE in parallel. Therefore, the Pass Switching
AE (PSAE) [11] is adopted. By using the PSAE architecture, only
one suit of processing unit is required to encode three coding passes
in parallel as shown in Fig. 5. Two stages of pipeline are used in the
proposed architecture. In this architecture, the index of the probability
table can be updated in the first stage of pipeline. Thus, no probability
look ahead is required and the hardware cost is reduced. Moreover,
the re-normalization and the byteout operation can be finished in one
cycle, which can ensure that one CXD pair can be consumed by the
AE module.

III. CHIP IMPLEMENTATION

The EBC architecture is implemented on a 1.23 mm2 die using
0.18 µm CMOS 1P6M technology. The detailed design flow and test
considerations are elaborated in the following sections.

A. Design Flow

Figure 6 shows the design flow for the chip. It’s quite similar to
a standard cell-based design flow. For the architecture design, we
use Verilog Hardware Description Language (HDL) to describe the
hardware. After a plenty of Verilog-XL simulations, we synthesize
the design by using Synopsys Design Compiler with the Artisan
cell library. The total gate count is 10 K gates and the on-chip
SRAM requirement is 320 bits. The detailed gate count distribution is
shown in Table I. The synthesis results are compared with the target
specification to see whether it is met or not. After confirming that the
specification is met, various Design for Testability (DfT) techniques
are considered and applied to the design, which will be described in
more detail in Sec. III-B.

After the DfT stage, we use Verilog-XL to perform the gate-level
simulation to make sure that the target specification is met. Moreover,
the power consumption is also estimated at this stage by using the
Synopsys PrimePower. The estimated power consumption is about
26.4 mW at 100 MHz. By use of the estimated power consumption,
we could perform the power-plan of the chip to ensure that the power
supply is enough and the power density is equally distributed on the
chip.

We use Synoposys Astro as the backend tool that performs auto-
matic place-and-route. In order to guarantee the timing specification
is met, we use timing driven place-and-route of Astro. This is because
the wire delay becomes non-negligible in 0.18 µm technology. Again,
we use Verilog-XL to perform post-layout gate-level simulation to

518

Algorithm

Analysis

C Simulation

Architecture

Design

HDL

Simulation

Logic

Synthesis

Meet Spec. ?

DfT

Consideration

Syntest for

BIST

Logic

Synthesis

Scan Chain

Insertion

Tetra-MAX

Coverage

Enough ?

Gate-level

Simulation

Prime

Power

Power

Satisify?

Powerplan &

Floorplan

Astro Timing

Driven P&R

Built-In

drc/lvs ?

Calibre

drc/lvs

Post-layout

Gate-level Sim.

Pass ?

Prime Time

Meet Spec. ?

Meet Spec. ?

Fabrication

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

Fig. 6. Design flow for the EBC chip.

TABLE I
HARDWARE REQUIREMENTS OF THE PROPOSED ARCHITECTURE

Module Gate Count Memory
(NAND2) (bits)

CF 1937 320
FIFO 400 0
AE 6596 0
OB 865 0

Control 658 0
Total 10456 320

confirm the functionality and the timing after clock tree synthesis,
gate sizing, and buffer insertion done by Astro. After that, to check
the design rule and electric connectivity, we use Mentor Graphics
Calibre to perform DRC and LVS. As the last step, we use Synopsys
PrimeTime to evaluate the timing by using static timing analysis.
Figure 7 shows the layout view. The core size and the target operating
frequency of the chip are 0.22 mm2 and 100 MHz, respectively.

B. Test Considerations

Besides the architecture, Design for Testability (DfT) is very
important for chip implementation. In this design, we use three
techniques: ad-hoc, Build-In-Self-Test (BIST), and scan chain.

The ad-hoc technique can increase the observability and control-
lability of the design. In the ad-hoc mode, we make input signals
directly connected to inputs of certain module and observe the output
signals from the output port as shown in Fig. 8. By doing this,
the module can be fully controlled and tested to see whether it is
functionally work or not. In the ad-hoc modes, we can control and
observe the CF and the AE modules. Therefore, if the chip does not
function correctly, we can find the module in which error occurs. A
few multiplexors and registers are spent for the ad-hoc testing mode,
which is quite efficiency.

It is very efficient to use the BIST for the testing of SRAM. For
the BIST algorithm, we adopted MARCH algorithm [14] due to its
effectiveness. We use one BIST controller for the 64×5 bits single
port SRAM. The total gate counts for the BIST resources is only
about 330 gates.

The most important DfT technique is the scan test. By the scan

Fig. 7. Layout view of the chip.

Context

Formation

FIFO

(4 x 7)

Coding State
Registers

Arithmetic
Encoder

MQ-Coder

Output Buffer

(7 x 10)

Fig. 8. Diagram of ad-hoc DfT technique.

test, a fault can almost always detectable if the fault coverage is high
enough. We use one scan path to connect 760 registers since the
number of register is not large. Besides, the SRAM are bypassed at
scan mode to increase the controllability of logics following them.
According to the report of Tetra-MAX, the number of faults are 37878
and the test coverage is 99.80%.

IV. EXPERIMENTAL RESULTS

A. Chip Feature

The chip has been fabricated and received in May 2004 by the
UMC. Figure 9 shows the die micrograph. After testing, the chip
is fully functional as expected. Moreover, the power consumption is
18.2 mW @ 1.8 V supply voltage at 100 MHz operating frequency,
which is lower than estimated. The supply voltage can be scaled
down to 1.4 V and the power consumption is 10.7 mW. The chip
can support 16.7 M Samples/sec encoding at 100 MHz operating
frequency. The detailed specification of the chip is shown in Table II.

B. Comparison

In this section, we compare the proposed EBC architecture with
others. The hardware requirement of various EBC architectures are
summarized in Table III. Except Fang’s architecture [12], all the
architectures are sequential architectures that process a code-block
in a bit-plane by bit-plane manner. Fang’s architecture is a parallel
architecture that process a DWT coefficient per cycle. For the
sequential architectures, the processing rate depends on the number of
non-zero bit-planes of a code-block. In this comparison, the number
of non-zero bit-planes is assumed to be six, which is an average value

519

TABLE III
COMPARISON OF VARIOUS EMBEDDED BLOCK CODING ARCHITECTURES

Technology Gate Count Memory Throughput Area Performance Index
(µm) (NAND2) (bits) (S

cycle) (mm2) (S
cycle·mm2)

Lian’s [9] 0.35 19000 12288 0.128 6.49 0.0197
Hsiao’s [10] 0.35 21589 8192 0.128 5.52 0.0232

Chiang’s [11] 0.35 23927 8192 0.167 5.20 0.0321
Fang’s [12] 0.25 91758 768 1.000 5.50† 0.1818

Proposed 0.18 10052 320 0.167 0.92 0.1875
† Normalized by doubling per technology generation.

Fig. 9. Die micrograph.

TABLE II
SPECIFICATION OF THE DEVELOPED EMBEDDED BLOCK CODING CHIP.

Item Description
Technology UMC 0.18 µm 1P6M CMOS
Pad/Core Voltage 3.3/1.4 V
Core Area 0.48×0.47 mm2

Logic Gates 10 K (2-input NAND gate)
SRAM 64×5 bits
Operating Frequency 100 MHz
Power Consumption 10.7 mW
Package CLCC68
Processing Rate 16.7 M Sample/sec

of nature images. The unit of the processing rate is defined as Samples
per cycle (S/cycle). By Table III, the gate count of the proposed
architecture is half of that of the other sequential architectures and is
only 1

9 of that of the parallel architecture. The memory requirement
of the proposed architecture is only 4% of that of the other sequential
architectures.

In order to make a fair comparison, the Performance Index (PI)
defined in [15] is adopted to compare these architectures. The PI
is defined as processing rate per unit area (S

cycle·mm2). For various
technologies, the area is normalized by doubling the area per technol-
ogy generation. Table III summaries the comparisons of various EBC
architectures by this metric. By Table III, the proposed architecture is
six times better than other sequential architectures and is comparable
to the parallel architecture This mainly comes from the low cost
context formation.

V. CONCLUSION

In this design, an area efficient chip for the embedded block coding
in JPEG 2000 is presented, which can support 16.7 M Sample/sec
encoding on a 1.23 mm2 die with 0.18 µm process. A new scheme
is proposed to accomplish context formation by computing all the
state variables on-the-fly. Therefore, a total number of 8 Kb state
variable memory is eliminated. The area of the proposed architecture
is only 1

6 of other sequential architectures while the throughput is the
same as others. According to the experimental results, the proposed
architecture is the most cost-effective among existing architectures.

REFERENCES

[1] JPEG 2000 Part I: Final Draft International Standard (ISO/IEC
FDIS15444-1). ISO/IEC JTC1/SC29/WG1 N1855, Aug. 2000.

[2] JPEG 2000 Verification Model 7.0 (Technical Description). ISO/IEC
JTC1/SC29/WG1 N1684, Apr. 2000.

[3] JPEG 2000 Requirements and Profiles. ISO/IEC JTC1/SC29/WG1
N1271, Mar. 1999.

[4] D. Taubman and M. Marchellin, JPEG2000: Image Compression Funda-
mentals, Standards and Practice. Kluwer Academic Publishers, 2002.

[5] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still
image compression standard,” IEEE Signal Processing Mag., vol. 18,
no. 5, pp. 36–58, Sept. 2001.

[6] JPEG: Still Image Data Compression Standard. W. Pennebaker and J.
Mitchell, New York: Van Nostrand Reinhold, 1992.

[7] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Trans. Image Processing, vol. 9, no. 7, pp. 1158–1170,
July 2000.

[8] EBCOT: Embedded Block Coding with Optimized Truncation. ISO/IEC
JTC1/SC29/WG1 N1020R, Oct. 1999.

[9] C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G. Chen, “Analysis and
architecture design of block-coding engine for EBCOT in JPEG 2000,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 3, pp. 219–230,
Mar. 2003.

[10] Y.-T. Hsiao, H.-D. Lin, and C.-W. Jen, “High-speed memory saving
architecture for the embedded block coding in JPEG 2000,” in Proc.
IEEE Int. Symp. Circuits and Systems, vol. 5, Scottsdale, Arizona, May
2002, pp. 133–136.

[11] J.-S. Chiang, Y.-S. Lin, and C.-Y. Hsieh, “Efficient pass-parallel for
EBCOT in JPEG 2000,” in Proc. IEEE Int. Symp. Circuits and Systems,
vol. 1, Scottsdale, Arizona, May 2002, pp. 773–776.

[12] H.-C. Fang, T.-C. Wang, C.-J. Lian, T.-H. Chang, and L.-G. Chen, “High
speed memory efficient ebcot architecture for JPEG2000,” in Proc. IEEE
Int. Symp. Circuits and Systems, vol. 2, Bangkok, Thailand, May 2003,
pp. 736–739.

[13] H.-C. Fang, Y.-W. Chang, and L.-G. Chen, “Area efficient architecture
for the embedded block coding in JPEG 2000,” in Proc. IEEE Interna-
tional Midwest Symposium on Circuits and Systems, Hiroshima, Japan,
July 2004.

[14] K.-L. Cheng, M.-F. Tsai, and C.-W. Wu, “Neighborhood pattern-sensitive
fault testing and diagnostics for random-access memories,” IEEE J.
Technol. Computer Aided Design, vol. 21, no. 11, pp. 1328–1336, 11
2002.

[15] H.-C. Fang, C.-T. Huang, Y.-W. Chang, T.-C. Wang, P.-C. Tseng, C.-J.
Lian, and L.-G. Chen, “81 MS/s JPEG 2000 single-chip encoder with
rate-distortion optimization,” in ISSCC Dig. Tech. Papers, San Francisco,
CA, Feb. 2004, pp. 328–329.

520

